Calculus

How to Find Limits (With Examples)

A practical, step-by-step guide to evaluating limits in calculus.

6 min read
By MathlyAI Team
CalculusLimitsBeginnerWorked Examples

Limits describe what a function approaches, not necessarily what it equals. This guide walks through the most common limit techniques with clear steps and many examples. If you are new to limits, start with direct substitution and then move into indeterminate forms like 0/00/0.

Quick Roadmap

  1. Try direct substitution.
  2. If you see an indeterminate form (0/00/0 or /\infty/\infty), simplify:
    • Factor and cancel
    • Rationalize
    • Use trig identities
    • Combine into a single fraction
  3. For limits at infinity, compare dominant terms.
  4. For piecewise functions, check left and right limits.

What a Limit Means

When we write

limxaf(x)=L,\lim_{x \to a} f(x) = L,

we mean that the values of f(x)f(x) get closer and closer to LL as xx gets closer and closer to aa. The function value at aa might be different or even undefined, and the limit can still exist.

1. Direct Substitution (Start Here)

If f(x)f(x) is continuous at aa, just plug in x=ax = a.

Example 1

limx3(x24x+7)\lim_{x \to 3} (x^2 - 4x + 7)

Solution

324(3)+7=912+7=43^2 - 4(3) + 7 = 9 - 12 + 7 = 4

Answer: 44

Example 2

limx2x2+5x+6x+3\lim_{x \to -2} \frac{x^2 + 5x + 6}{x + 3}

Solution

Direct substitution works because the denominator is not zero:

(2)2+5(2)+62+3=410+61=0\frac{(-2)^2 + 5(-2) + 6}{-2 + 3} = \frac{4 - 10 + 6}{1} = 0

Answer: 00

2. Factoring and Canceling (0/00/0 Forms)

When substitution gives 0/00/0, it means there is a removable factor.

Example 3

limx2x24x2\lim_{x \to 2} \frac{x^2 - 4}{x - 2}

Solution

Factor:

(x2)(x+2)x2\frac{(x - 2)(x + 2)}{x - 2}

Cancel x2x - 2:

limx2(x+2)=4\lim_{x \to 2} (x + 2) = 4

Answer: 44

Example 4

limx1x3+1x+1\lim_{x \to -1} \frac{x^3 + 1}{x + 1}

Solution

Factor sum of cubes:

x3+1=(x+1)(x2x+1)x^3 + 1 = (x + 1)(x^2 - x + 1)

Cancel x+1x + 1:

limx1(x2x+1)=(1)2(1)+1=3\lim_{x \to -1} (x^2 - x + 1) = (-1)^2 - (-1) + 1 = 3

Answer: 33

3. Rationalizing (Roots in the Numerator or Denominator)

If you have a square root and get 0/00/0, multiply by the conjugate.

Example 5

limx0x+93x\lim_{x \to 0} \frac{\sqrt{x + 9} - 3}{x}

Solution

Multiply by the conjugate:

x+93xx+9+3x+9+3\frac{\sqrt{x + 9} - 3}{x} \cdot \frac{\sqrt{x + 9} + 3}{\sqrt{x + 9} + 3}

Simplify:

x+99x(x+9+3)=xx(x+9+3)\frac{x + 9 - 9}{x(\sqrt{x + 9} + 3)} = \frac{x}{x(\sqrt{x + 9} + 3)}

Cancel xx:

limx01x+9+3=16\lim_{x \to 0} \frac{1}{\sqrt{x + 9} + 3} = \frac{1}{6}

Answer: 16\frac{1}{6}

Example 6

limx44x4x\lim_{x \to 4} \frac{4 - \sqrt{x}}{4 - x}

Solution

Rewrite and rationalize:

4x4x4+x4+x=16x(4x)(4+x)\frac{4 - \sqrt{x}}{4 - x} \cdot \frac{4 + \sqrt{x}}{4 + \sqrt{x}} = \frac{16 - x}{(4 - x)(4 + \sqrt{x})}

Now 16x=(x16)16 - x = -(x - 16) and 4x=(x4)4 - x = -(x - 4), so:

16x(4x)(4+x)=14+x\frac{16 - x}{(4 - x)(4 + \sqrt{x})} = \frac{1}{4 + \sqrt{x}}

Plug in x=4x = 4:

14+2=16\frac{1}{4 + 2} = \frac{1}{6}

Answer: 16\frac{1}{6}

4. Trigonometric Limits and Identities

Two key limits:

limx0sinxx=1,limx01cosxx=0\lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0

Also:

limx01cosxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}

Example 7

limx0sin(5x)x\lim_{x \to 0} \frac{\sin(5x)}{x}

Solution

Multiply and divide by 55:

limx05sin(5x)5x=51=5\lim_{x \to 0} 5 \cdot \frac{\sin(5x)}{5x} = 5 \cdot 1 = 5

Answer: 55

Example 8

limx01cos(3x)x2\lim_{x \to 0} \frac{1 - \cos(3x)}{x^2}

Solution

Use the known limit:

1cos(3x)x2=1cos(3x)(3x)29\frac{1 - \cos(3x)}{x^2} = \frac{1 - \cos(3x)}{(3x)^2} \cdot 9

So:

9limx01cos(3x)(3x)2=912=929 \cdot \lim_{x \to 0} \frac{1 - \cos(3x)}{(3x)^2} = 9 \cdot \frac{1}{2} = \frac{9}{2}

Answer: 92\frac{9}{2}

5. Combine and Simplify Complex Fractions

Sometimes you need to combine terms first.

Example 9

limx21x12x2\lim_{x \to 2} \frac{\frac{1}{x} - \frac{1}{2}}{x - 2}

Solution

Combine the numerator:

2x2xx2=2x2x(x2)\frac{\frac{2 - x}{2x}}{x - 2} = \frac{2 - x}{2x(x - 2)}

Note 2x=(x2)2 - x = -(x - 2):

(x2)2x(x2)=12x\frac{-(x - 2)}{2x(x - 2)} = -\frac{1}{2x}

Now substitute:

12(2)=14-\frac{1}{2(2)} = -\frac{1}{4}

Answer: 14-\frac{1}{4}

6. Limits at Infinity

For rational functions, compare the highest power of xx.

Example 10

limx4x32x+12x3+7x25\lim_{x \to \infty} \frac{4x^3 - 2x + 1}{2x^3 + 7x^2 - 5}

Solution

Divide by x3x^3:

limx42x2+1x32+7x5x3=42=2\lim_{x \to \infty} \frac{4 - \frac{2}{x^2} + \frac{1}{x^3}}{2 + \frac{7}{x} - \frac{5}{x^3}} = \frac{4}{2} = 2

Answer: 22

Example 11

limx3x2+15x32x\lim_{x \to \infty} \frac{3x^2 + 1}{5x^3 - 2x}

Solution

Degree in denominator is higher, so limit is 00.

Answer: 00

7. One-Sided Limits and Piecewise Functions

If the left-hand and right-hand limits are different, the limit does not exist.

Example 12

Let

f(x)={2x+1,x<1x21,x1f(x) = \begin{cases} 2x + 1, & x < 1 \\ x^2 - 1, & x \ge 1 \end{cases}

Find limx1f(x)\lim_{x \to 1} f(x).

Solution

Left-hand limit:

limx1(2x+1)=3\lim_{x \to 1^-} (2x + 1) = 3

Right-hand limit:

limx1+(x21)=0\lim_{x \to 1^+} (x^2 - 1) = 0

They are not equal, so the limit does not exist.

Answer: DNE

8. Squeeze Theorem (Bounds Method)

If g(x)f(x)h(x)g(x) \le f(x) \le h(x) and

limxag(x)=limxah(x)=L,\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L,

then limxaf(x)=L\lim_{x \to a} f(x) = L.

Example 13

limx0x2sin(1x)\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right)

Solution

Since 1sin(1/x)1-1 \le \sin(1/x) \le 1,

x2x2sin(1x)x2-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2

Both bounds go to 00, so the limit is 00.

Answer: 00

9. A Practical Checklist for Any Limit

Use this checklist when you get stuck:

  1. Substitute directly and see what happens.
  2. If 0/00/0, try factoring or common denominators.
  3. If roots are involved, rationalize.
  4. If trig is involved, use special trig limits or identities.
  5. If infinity appears, compare highest powers or divide by the highest power.
  6. For piecewise functions, evaluate left and right limits.
  7. Consider Squeeze Theorem if the function oscillates.

Common Mistakes to Avoid

  • Cancelling terms that are not factors.
  • Plugging in too early when you have 0/00/0.
  • Forgetting to check one-sided limits for piecewise or absolute value functions.
  • Mixing degrees incorrectly in limits at infinity.
  • Treating lim\lim like direct evaluation when the function is undefined at the point.

Practice Problems (With Answers)

  1. limx1x21x1\lim_{x \to 1} \frac{x^2 - 1}{x - 1}
    Answer: 22
  2. limx0sin(2x)x\lim_{x \to 0} \frac{\sin(2x)}{x}
    Answer: 22
  3. limx04+x2x\lim_{x \to 0} \frac{\sqrt{4 + x} - 2}{x}
    Answer: 14\frac{1}{4}
  4. limx7x232x2+5x\lim_{x \to \infty} \frac{7x^2 - 3}{2x^2 + 5x}
    Answer: 72\frac{7}{2}
  5. limx01cosxx2\lim_{x \to 0} \frac{1 - \cos x}{x^2}
    Answer: 12\frac{1}{2}

Final Takeaway

Limits become much easier when you follow a consistent process. Start with direct substitution, then resolve indeterminate forms using algebra or identities. With practice, you will recognize patterns quickly and choose the right technique on the first try.