Calculus

Integration by Parts: Complete Guide + 10 Solved Problems

Master integration by parts with this comprehensive guide and practice with 10 detailed solved problems.

11 min read
By MathlyAI Team
CalculusIntegrationIntegration by PartsSolved ProblemsAdvanced Calculus

Integration by Parts is a powerful technique in calculus that allows us to integrate products of functions. It's essentially the inverse of the product rule for differentiation. When you encounter an integral that looks like a product of two different types of functions (e.g., a polynomial times an exponential, or a polynomial times a trigonometric function), integration by parts is often the key to solving it.

The Integration by Parts Formula

The formula for integration by parts is derived directly from the product rule:

If uu and vv are differentiable functions of xx, then the product rule states:

ddx(uv)=udvdx+vdudx\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}

Integrating both sides with respect to xx:

ddx(uv)dx=udvdxdx+vdudxdx\int \frac{d}{dx}(uv) dx = \int u \frac{dv}{dx} dx + \int v \frac{du}{dx} dx

This simplifies to:

uv=udv+vdu​uv = \int u \, dv + \int v \, du

Rearranging to solve for udv\int u \, dv, we get the Integration by Parts Formula:

udv=uvvdu\int u \, dv = uv - \int v \, du

The Strategy: Choosing uu and dvdv (LIATE)

The success of integration by parts heavily depends on how you choose uu and dvdv. The goal is to make the new integral, vdu\int v \, du, simpler to solve than the original integral, udv\int u \, dv. A helpful mnemonic for choosing uu is LIATE:

  1. Logarithmic functions (e.g., lnx\ln x)
  2. Inverse trigonometric functions (e.g., arcsinx\arcsin x, arctanx\arctan x)
  3. Algebraic functions (e.g., xnx^n, polynomials)
  4. Trigonometric functions (e.g., sinx\sin x, cosx\cos x)
  5. Exponential functions (e.g., exe^x, axa^x)

Choose uu as the function that comes first in the LIATE order. The remaining part of the integrand will be dvdv. This rule generally works because functions earlier in LIATE simplify when differentiated, and functions later in LIATE are easy to integrate.

Step-by-Step Process

  1. Choose uu and dvdv from the integrand using the LIATE rule.
  2. Differentiate uu to find dudu.
  3. Integrate dvdv to find vv.
  4. Apply the formula: udv=uvvdu\int u \, dv = uv - \int v \, du.
  5. Evaluate the new integral (vdu\int v \, du). If it's still complex, you might need to apply integration by parts again!

10 Solved Problems

Let's put the formula into practice with various examples.

Problem 1: Basic Example (Algebraic x Exponential)

Evaluate: xexdx\int x e^x \, dx

Solution:

  1. Choose uu and dvdv: According to LIATE, Algebraic (xx) comes before Exponential (exe^x).
    • u=xu = x
    • dv=exdxdv = e^x \, dx
  2. Find dudu and vv:
    • du=1dxdu = 1 \, dx
    • v=exdx=exv = \int e^x \, dx = e^x
  3. Apply the formula: udv=uvvdu\int u \, dv = uv - \int v \, du xexdx=xexex(1)dx\int x e^x \, dx = x e^x - \int e^x (1) \, dx
  4. Evaluate the new integral: xexdx=xexex+C\int x e^x \, dx = x e^x - e^x + C

Answer: ex(x1)+Ce^x(x - 1) + C

Problem 2: Basic Example (Algebraic x Trigonometric)

Evaluate: xcosxdx\int x \cos x \, dx

Solution:

  1. Choose uu and dvdv:
    • u=xu = x
    • dv=cosxdxdv = \cos x \, dx
  2. Find dudu and vv:
    • du=1dxdu = 1 \, dx
    • v=cosxdx=sinxv = \int \cos x \, dx = \sin x
  3. Apply the formula: xcosxdx=xsinxsinxdx\int x \cos x \, dx = x \sin x - \int \sin x \, dx
  4. Evaluate the new integral: xcosxdx=xsinx(cosx)+C\int x \cos x \, dx = x \sin x - (-\cos x) + C xcosxdx=xsinx+cosx+C\int x \cos x \, dx = x \sin x + \cos x + C

Answer: xsinx+cosx+Cx \sin x + \cos x + C

Problem 3: Involving Logarithmic Functions

Evaluate: lnxdx\int \ln x \, dx

Solution:

  1. Choose uu and dvdv: Logarithmic functions are first in LIATE. There's no other function, so we let dv=dxdv = dx.
    • u=lnxu = \ln x
    • dv=dxdv = dx
  2. Find dudu and vv:
    • du=1xdxdu = \frac{1}{x} \, dx
    • v=dx=xv = \int dx = x
  3. Apply the formula: lnxdx=(lnx)(x)x(1x)dx\int \ln x \, dx = (\ln x)(x) - \int x \left(\frac{1}{x}\right) \, dx
  4. Evaluate the new integral: lnxdx=xlnx1dx\int \ln x \, dx = x \ln x - \int 1 \, dx lnxdx=xlnxx+C\int \ln x \, dx = x \ln x - x + C

Answer: xlnxx+Cx \ln x - x + C

Problem 4: Repeated Integration by Parts

Evaluate: x2exdx\int x^2 e^x \, dx

Solution:

  1. First application:
    • u=x2    du=2xdxu = x^2 \implies du = 2x \, dx
    • dv=exdx    v=exdv = e^x \, dx \implies v = e^x
    x2exdx=x2exex(2x)dx=x2ex2xexdx\int x^2 e^x \, dx = x^2 e^x - \int e^x (2x) \, dx = x^2 e^x - 2 \int x e^x \, dx
  2. Second application (on xexdx\int x e^x \, dx, which we solved in Problem 1):
    • We know xexdx=xexex+C\int x e^x \, dx = x e^x - e^x + C.
  3. Substitute back: x2exdx=x2ex2(xexex)+C\int x^2 e^x \, dx = x^2 e^x - 2(x e^x - e^x) + C x2exdx=x2ex2xex+2ex+C\int x^2 e^x \, dx = x^2 e^x - 2x e^x + 2e^x + C

Answer: ex(x22x+2)+Ce^x(x^2 - 2x + 2) + C

Problem 5: Cycling Integrals (Requires solving for the integral)

Evaluate: exsinxdx\int e^x \sin x \, dx

Solution: This type of integral often requires two applications of integration by parts, leading back to the original integral, allowing you to solve for it algebraically.

  1. First application:
    • u=sinx    du=cosxdxu = \sin x \implies du = \cos x \, dx
    • dv=exdx    v=exdv = e^x \, dx \implies v = e^x
    I=exsinxdx=exsinxexcosxdxI = \int e^x \sin x \, dx = e^x \sin x - \int e^x \cos x \, dx
  2. Second application (on excosxdx\int e^x \cos x \, dx):
    • u=cosx    du=sinxdxu = \cos x \implies du = -\sin x \, dx
    • dv=exdx    v=exdv = e^x \, dx \implies v = e^x
    excosxdx=excosxex(sinx)dx\int e^x \cos x \, dx = e^x \cos x - \int e^x (-\sin x) \, dx excosxdx=excosx+exsinxdx\int e^x \cos x \, dx = e^x \cos x + \int e^x \sin x \, dx
  3. Substitute back into the first equation: I=exsinx(excosx+exsinxdx)I = e^x \sin x - (e^x \cos x + \int e^x \sin x \, dx) I=exsinxexcosxII = e^x \sin x - e^x \cos x - I
  4. Solve for II: 2I=exsinxexcosx2I = e^x \sin x - e^x \cos x I=12(exsinxexcosx)+CI = \frac{1}{2} (e^x \sin x - e^x \cos x) + C

Answer: 12ex(sinxcosx)+C\frac{1}{2} e^x (\sin x - \cos x) + C

Problem 6: Definite Integral

Evaluate: 0π/2xsinxdx\int_0^{\pi/2} x \sin x \, dx

Solution: First, find the indefinite integral xsinxdx\int x \sin x \, dx.

  1. Choose uu and dvdv:
    • u=x    du=dxu = x \implies du = dx
    • dv=sinxdx    v=cosxdv = \sin x \, dx \implies v = -\cos x
  2. Apply the formula: xsinxdx=x(cosx)(cosx)dx\int x \sin x \, dx = x(-\cos x) - \int (-\cos x) \, dx =xcosx+cosxdx= -x \cos x + \int \cos x \, dx =xcosx+sinx= -x \cos x + \sin x

Now, evaluate from 00 to π/2\pi/2:

[xcosx+sinx]0π/2=(π2cosπ2+sinπ2)(0cos0+sin0)[-x \cos x + \sin x]_0^{\pi/2} = \left(-\frac{\pi}{2} \cos \frac{\pi}{2} + \sin \frac{\pi}{2}\right) - (-0 \cos 0 + \sin 0) =(π20+1)(0+0)= \left(-\frac{\pi}{2} \cdot 0 + 1\right) - (0 + 0) =10=1= 1 - 0 = 1

Answer: 11

Problem 7: Inverse Trigonometric Function

Evaluate: arctanxdx\int \arctan x \, dx

Solution:

  1. Choose uu and dvdv:
    • u=arctanx    du=11+x2dxu = \arctan x \implies du = \frac{1}{1 + x^2} \, dx
    • dv=dx    v=xdv = dx \implies v = x
  2. Apply the formula: arctanxdx=xarctanxx11+x2dx\int \arctan x \, dx = x \arctan x - \int x \frac{1}{1 + x^2} \, dx
  3. Evaluate the new integral (use substitution: let w=1+x2w = 1 + x^2, then dw=2xdxdw = 2x \, dx): x11+x2dx=121wdw=12lnw=12ln(1+x2)\int x \frac{1}{1 + x^2} \, dx = \frac{1}{2} \int \frac{1}{w} \, dw = \frac{1}{2} \ln|w| = \frac{1}{2} \ln(1 + x^2)
  4. Substitute back: arctanxdx=xarctanx12ln(1+x2)+C\int \arctan x \, dx = x \arctan x - \frac{1}{2} \ln(1 + x^2) + C

Answer: xarctanx12ln(1+x2)+Cx \arctan x - \frac{1}{2} \ln(1 + x^2) + C

Problem 8: Algebraic and Logarithmic

Evaluate: x3lnxdx\int x^3 \ln x \, dx

Solution:

  1. Choose uu and dvdv:
    • u=lnx    du=1xdxu = \ln x \implies du = \frac{1}{x} \, dx
    • dv=x3dx    v=x44dv = x^3 \, dx \implies v = \frac{x^4}{4}
  2. Apply the formula: x3lnxdx=(lnx)(x44)x44(1x)dx\int x^3 \ln x \, dx = (\ln x)\left(\frac{x^4}{4}\right) - \int \frac{x^4}{4} \left(\frac{1}{x}\right) \, dx =x44lnxx34dx= \frac{x^4}{4} \ln x - \int \frac{x^3}{4} \, dx
  3. Evaluate the new integral: =x44lnx14x44+C= \frac{x^4}{4} \ln x - \frac{1}{4} \frac{x^4}{4} + C =x44lnxx416+C= \frac{x^4}{4} \ln x - \frac{x^4}{16} + C

Answer: x44(lnx14)+C\frac{x^4}{4} \left(\ln x - \frac{1}{4}\right) + C

Problem 9: Algebraic and Trigonometric (Repeated)

Evaluate: x2sinxdx\int x^2 \sin x \, dx

Solution:

  1. First application:
    • u=x2    du=2xdxu = x^2 \implies du = 2x \, dx
    • dv=sinxdx    v=cosxdv = \sin x \, dx \implies v = -\cos x
    x2sinxdx=x2cosx(cosx)(2x)dx\int x^2 \sin x \, dx = -x^2 \cos x - \int (-\cos x)(2x) \, dx =x2cosx+2xcosxdx= -x^2 \cos x + 2 \int x \cos x \, dx
  2. Second application (on xcosxdx\int x \cos x \, dx, from Problem 2):
    • We know xcosxdx=xsinx+cosx\int x \cos x \, dx = x \sin x + \cos x.
  3. Substitute back: =x2cosx+2(xsinx+cosx)+C= -x^2 \cos x + 2(x \sin x + \cos x) + C =x2cosx+2xsinx+2cosx+C= -x^2 \cos x + 2x \sin x + 2 \cos x + C

Answer: 2xsinx+(2x2)cosx+C2x \sin x + (2 - x^2) \cos x + C

Problem 10: Definite Integral with Cycling (Implicit Solving)

Evaluate: 0πe2xcosxdx\int_0^\pi e^{2x} \cos x \, dx

Solution: First, find the indefinite integral I=e2xcosxdxI = \int e^{2x} \cos x \, dx.

  1. First application:
    • u=cosx    du=sinxdxu = \cos x \implies du = -\sin x \, dx
    • dv=e2xdx    v=12e2xdv = e^{2x} \, dx \implies v = \frac{1}{2} e^{2x}
    I=12e2xcosx12e2x(sinx)dxI = \frac{1}{2} e^{2x} \cos x - \int \frac{1}{2} e^{2x} (-\sin x) \, dx I=12e2xcosx+12e2xsinxdxI = \frac{1}{2} e^{2x} \cos x + \frac{1}{2} \int e^{2x} \sin x \, dx
  2. Second application (on e2xsinxdx\int e^{2x} \sin x \, dx):
    • u=sinx    du=cosxdxu = \sin x \implies du = \cos x \, dx
    • dv=e2xdx    v=12e2xdv = e^{2x} \, dx \implies v = \frac{1}{2} e^{2x}
    e2xsinxdx=12e2xsinx12e2xcosxdx\int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \int \frac{1}{2} e^{2x} \cos x \, dx =12e2xsinx12I= \frac{1}{2} e^{2x} \sin x - \frac{1}{2} I
  3. Substitute back: I=12e2xcosx+12(12e2xsinx12I)I = \frac{1}{2} e^{2x} \cos x + \frac{1}{2} \left(\frac{1}{2} e^{2x} \sin x - \frac{1}{2} I\right) I=12e2xcosx+14e2xsinx14II = \frac{1}{2} e^{2x} \cos x + \frac{1}{4} e^{2x} \sin x - \frac{1}{4} I
  4. Solve for II: I+14I=12e2xcosx+14e2xsinxI + \frac{1}{4} I = \frac{1}{2} e^{2x} \cos x + \frac{1}{4} e^{2x} \sin x 54I=14e2x(2cosx+sinx)\frac{5}{4} I = \frac{1}{4} e^{2x} (2 \cos x + \sin x) I=15e2x(2cosx+sinx)I = \frac{1}{5} e^{2x} (2 \cos x + \sin x)

Now, evaluate the definite integral from 00 to π\pi:

[15e2x(2cosx+sinx)]0π\left[\frac{1}{5} e^{2x} (2 \cos x + \sin x)\right]_0^\pi =15e2π(2cosπ+sinπ)15e2(0)(2cos0+sin0)= \frac{1}{5} e^{2\pi} (2 \cos \pi + \sin \pi) - \frac{1}{5} e^{2(0)} (2 \cos 0 + \sin 0) =15e2π(2(1)+0)15(1)(2(1)+0)= \frac{1}{5} e^{2\pi} (2(-1) + 0) - \frac{1}{5} (1) (2(1) + 0) =15e2π(2)15(2)= \frac{1}{5} e^{2\pi} (-2) - \frac{1}{5} (2) =25e2π25= -\frac{2}{5} e^{2\pi} - \frac{2}{5}

Answer: 25(e2π+1)-\frac{2}{5} (e^{2\pi} + 1)

Common Pitfalls and Tips

  • Incorrect uu and dvdv selection: Always use LIATE as a guideline. A bad choice can make the integral harder.
  • Forgetting the dxdx: dudu and dvdv always include dxdx.
  • Sign errors: Be careful with minus signs, especially when integrating trigonometric functions or when vduv \, du has a negative.
  • Recursion: For cycling integrals, remember to bring the integral to the left side and solve algebraically.
  • Definite Integrals: Don't forget to evaluate the uvuv term at the limits of integration.

With practice, integration by parts becomes a valuable tool in your calculus toolkit.