Formula Library

LaTeX Formula Library

Browse, search, and copy commonly used LaTeX formulas. Click any formula to copy it to your clipboard.

Showing 65 of 65 mathematical formulas

Quadratic FormulaBeginner

Solution to quadratic equations ax² + bx + c = 0

Algebra9th centuryMuhammad ibn Musa al-Khwarizmi
x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}
Binomial TheoremIntermediate

Expansion of (x+y)ⁿ

Algebra1665Isaac Newton
(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k
Difference of SquaresBeginner

Factorization of difference of two squares

AlgebraAncientAncient mathematicians
a^2 - b^2 = (a+b)(a-b)
Derivative DefinitionIntermediate

Definition of derivative as a limit

Calculus17th centuryIsaac Newton and Gottfried Leibniz
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
Chain RuleIntermediate

Derivative of composite functions

Calculus17th centuryGottfried Leibniz
\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)
Fundamental Theorem of CalculusAdvanced

Connection between derivatives and integrals

Calculus17th centuryIsaac Newton and Gottfried Leibniz
\int_a^b f(x) \, dx = F(b) - F(a), \quad F'(x) = f(x)
Normal DistributionIntermediate

Gaussian distribution probability density

Statistics18th centuryCarl Friedrich Gauss
f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}
Bayes' TheoremIntermediate

Update probability based on new evidence

Statistics18th centuryThomas Bayes
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
Eigenvalue EquationAdvanced

Matrix eigenvalue and eigenvector

Linear Algebra18th centuryLeonhard Euler
A\vec{v} = \lambda\vec{v}
Dot ProductBeginner

Inner product of two vectors

Linear Algebra19th centuryWilliam Rowan Hamilton
\vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i b_i = |\vec{a}||\vec{b}|\cos\theta
Pythagorean IdentityBeginner

Fundamental trigonometric identity

TrigonometryAncientAncient Greek mathematicians
\sin^2\theta + \cos^2\theta = 1
Euler's FormulaAdvanced

Complex exponential and trigonometric functions

Trigonometry18th centuryLeonhard Euler
e^{i\theta} = \cos\theta + i\sin\theta
Schrödinger EquationAdvanced

Fundamental equation of quantum mechanics

Physics1926Erwin Schrödinger
i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi
Area of CircleBeginner

Area of circle with radius r

GeometryAncientAncient mathematicians
A = \pi r^2
Volume of SphereIntermediate

Volume of sphere with radius r

GeometryAncientArchimedes
V = \frac{4}{3}\pi r^3
Cauchy-Riemann EquationsAdvanced

Necessary conditions for complex differentiability

Complex Analysis19th centuryAugustin-Louis Cauchy and Bernhard Riemann
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
Laplace TransformAdvanced

Integral transform for solving ODEs

Differential Equations18th centuryPierre-Simon Laplace
\mathcal{L}\{f(t)\} = F(s) = \int_0^{\infty} e^{-st}f(t) \, dt
Taylor SeriesAdvanced

Taylor series expansion around point a

Calculus18th centuryBrook Taylor
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n
Fourier SeriesAdvanced

Representation of periodic functions as sum of sines and cosines

Calculus19th centuryJoseph Fourier
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n\cos\left(\frac{n\pi x}{L}\right) + b_n\sin\left(\frac{n\pi x}{L}\right)\right)
Stokes' TheoremAdvanced

Connection between line integrals and surface integrals

Calculus19th centuryGeorge Gabriel Stokes
\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot d\vec{S}
Central Limit TheoremAdvanced

Sample means approach normal distribution as sample size increases

Statistics18th centuryAbraham de Moivre, Pierre-Simon Laplace
\lim_{n \to \infty} P\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \leq z\right) = \Phi(z)
3D Pythagorean TheoremBeginner

Distance from origin in 3D space

GeometryAncientAncient mathematicians
d = \sqrt{x^2 + y^2 + z^2}
L'Hôpital's RuleIntermediate

Evaluate limits of indeterminate forms

Calculus17th centuryGuillaume de l'Hôpital
\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}
Integration by PartsIntermediate

Product rule for integration

Calculus17th centuryBrook Taylor
\int u \, dv = uv - \int v \, du
Matrix Inverse (2×2)Intermediate

Inverse of 2×2 matrix

Linear Algebra19th centuryArthur Cayley
A^{-1} = \frac{1}{\det(A)}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}
Confidence IntervalIntermediate

Interval estimate for population mean

Statistics20th centuryJerzy Neyman
\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}
Maxwell's EquationsAdvanced

Fundamental equations of electromagnetism

Physics19th centuryJames Clerk Maxwell
\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}, \quad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}
Completing the SquareIntermediate

Method to convert quadratic to vertex form

AlgebraAncientAncient mathematicians
ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}
Geometric SeriesIntermediate

Sum of finite geometric series

AlgebraAncientAncient mathematicians
\sum_{k=0}^{n} ar^k = a\frac{1-r^{n+1}}{1-r}, \quad r \neq 1
Arithmetic SeriesBeginner

Sum of arithmetic sequence

AlgebraAncientAncient mathematicians
\sum_{k=1}^{n} (a + (k-1)d) = \frac{n}{2}(2a + (n-1)d)
Definite IntegralIntermediate

Fundamental theorem of calculus

Calculus17th centuryIsaac Newton and Gottfried Leibniz
\int_{a}^{b} f(x) \, dx = F(b) - F(a)
Product RuleBeginner

Derivative of product of functions

Calculus17th centuryGottfried Leibniz
\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)
Quotient RuleIntermediate

Derivative of quotient of functions

Calculus17th centuryGottfried Leibniz
\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}
Power RuleBeginner

Derivative of power function

Calculus17th centuryIsaac Newton and Gottfried Leibniz
\frac{d}{dx}[x^n] = nx^{n-1}
Mean (Average)Beginner

Arithmetic mean of a dataset

StatisticsAncientAncient mathematicians
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
VarianceIntermediate

Measure of data spread

Statistics19th centuryRonald Fisher
\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2
Standard DeviationIntermediate

Square root of variance

Statistics19th centuryKarl Pearson
\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}
CovarianceIntermediate

Measure of joint variability

Statistics19th centuryFrancis Galton
\text{Cov}(X,Y) = \frac{1}{n}\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})
Correlation CoefficientIntermediate

Pearson correlation coefficient

Statistics19th centuryKarl Pearson
r = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}
Binomial ProbabilityIntermediate

Probability of k successes in n trials

Statistics17th centuryJacob Bernoulli
P(X = k) = \binom{n}{k}p^k(1-p)^{n-k}
Matrix MultiplicationIntermediate

Definition of matrix product

Linear Algebra19th centuryArthur Cayley
(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}
2×2 DeterminantBeginner

Determinant of 2×2 matrix

Linear Algebra19th centuryArthur Cayley
\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc
Cross ProductIntermediate

Vector product in 3D space

Linear Algebra19th centuryWilliam Rowan Hamilton
\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}
Matrix TraceIntermediate

Sum of diagonal elements

Linear Algebra19th centuryArthur Cayley
\text{tr}(A) = \sum_{i=1}^{n} a_{ii}
Law of SinesIntermediate

Relationship between sides and angles in triangles

TrigonometryAncientAncient mathematicians
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
Law of CosinesIntermediate

Generalization of Pythagorean theorem

TrigonometryAncientAncient mathematicians
c^2 = a^2 + b^2 - 2ab\cos C
Double Angle (Sine)Intermediate

Sine of double angle

TrigonometryAncientAncient mathematicians
\sin(2\theta) = 2\sin\theta\cos\theta
Double Angle (Cosine)Intermediate

Cosine of double angle

TrigonometryAncientAncient mathematicians
\cos(2\theta) = \cos^2\theta - \sin^2\theta
Sum of AnglesIntermediate

Sine of sum of two angles

TrigonometryAncientAncient mathematicians
\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta
Kinetic EnergyBeginner

Energy of motion

Physics17th centuryGottfried Leibniz
KE = \frac{1}{2}mv^2
MomentumBeginner

Linear momentum of an object

Physics17th centuryIsaac Newton
p = mv
Work-Energy TheoremIntermediate

Relationship between work and kinetic energy

Physics17th centuryIsaac Newton
W = \Delta KE = \frac{1}{2}m(v_f^2 - v_i^2)
Ohm's LawBeginner

Relationship between voltage, current, and resistance

Physics19th centuryGeorg Ohm
V = IR
Coulomb's LawIntermediate

Electrostatic force between charges

Physics18th centuryCharles-Augustin de Coulomb
F = k\frac{q_1 q_2}{r^2}
Universal GravitationIntermediate

Newton's law of universal gravitation

Physics17th centuryIsaac Newton
F = G\frac{m_1 m_2}{r^2}
Wave EquationBeginner

Relationship between wave speed, frequency, and wavelength

Physics17th centuryChristiaan Huygens
v = f\lambda
Lorentz ForceAdvanced

Force on charged particle in electromagnetic field

Physics19th centuryHendrik Lorentz
\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})
Green's TheoremAdvanced

Connection between line integral and double integral in the plane

Calculus19th centuryGeorge Green
\oint_C (P\,dx + Q\,dy) = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA
Divergence TheoremAdvanced

Connection between surface integral and volume integral

Calculus19th centuryCarl Friedrich Gauss and Mikhail Ostrogradsky
\oiint_S \vec{F} \cdot d\vec{S} = \iiint_V (\nabla \cdot \vec{F}) \, dV
De Moivre's TheoremIntermediate

Powers of complex numbers in polar form

Complex Analysis18th centuryAbraham de Moivre
(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)
Riemann SumIntermediate

Approximation of definite integral using rectangles

Calculus19th centuryBernhard Riemann
\sum_{i=1}^{n} f(x_i^*) \Delta x_i
Poisson DistributionIntermediate

Probability distribution for rare events

Statistics19th centurySiméon Denis Poisson
P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}

About Our Math Formula Library

Our free LaTeX formula library provides mathematical formulas in ready-to-use LaTeX code. Perfect for students, researchers, and professionals.

Browse LaTeX formulas by category. Search by name, description, or LaTeX code. Copy formulas instantly for your documents.

This math formula library covers calculus, algebra, geometry, statistics, and more. Each formula includes the complete LaTeX equation with proper formatting.

Helpful Resources

Share This Library